A Generalized Markov-Chain Modelling Approach to $(1,\lambda )$-ES Linear Optimization
نویسندگان
چکیده
The manuscript generalizes several recent results of the 2nd author concerning Markov-Chain Modelling of $(1,\lambda )$-ES Linear Optimization.
منابع مشابه
A Generalized Markov-Chain Modelling Approach to $(1,\lambda)$-ES Linear Optimization: Technical Report
Several recent publications investigated Markov-chain modelling of linear optimization by a (1, λ)-ES, considering both unconstrained and linearly constrained optimization, and both constant and varying step size. All of them assume normality of the involved random steps, and while this is consistent with a black-box scenario, information on the function to be optimized (e.g. separability) may ...
متن کاملOn Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains
In the context of numerical optimization, this paper develops a methodology to analyze the linear convergence of comparison-based step-size adaptive randomized search (CB-SARS), a class of probabilistic derivative-free optimization algorithms where the function is solely used through comparisons of candidate solutions. Various algorithms are included in the class of CB-SARS algorithms. On the o...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملMarkov-switching generalized additive models
We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for...
متن کاملLinear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule
In the context of unconstraint numerical optimization, this paper investigates the global linear convergence of a simple probabilistic derivative-free optimization algorithm (DFO). The algorithm samples a candidate solution from a standard multivariate normal distribution scaled by a step-size and centered in the current solution. This solution is accepted if it has a better objective function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013